Process Mineralogy Today

A discussion resource for process mineralogy using todays technologies


MinAssist Privacy Policy

Privacy is important and we respect yours.

This policy sets out our privacy practices and how we handle information we may collect from or about you when you visit

What do we capture and what for?

You may choose to provide information such as email address, name, phone number, company and so forth to MinAssist in order to:

  • subscribe to the MinAssist Newsletter;
  • download resources like digital books; or
  • make an enquiry about MinAssist’s services.

This information is used by MinAssist to:

  • respond to enquiries originating from you.
  • add you to a mailing list for newsletters and other occasional email contact. You may request at any time to be removed from this list.
  • add your to our contacts database which may result in email, postal or telephone communication. You may request at any time to be removed from this list.

Google Analytics

MInAssist also uses Google Analytics, a web analytics service. Google Analytics uses cookies, web beacons, and other means to help MInAssit analyse how users use the site. For information about Google’s Privacy Policy please refer to

Sharing of Information

MinAssist may share information under the following circumstances:

  • legal requirement - courts, administrative agencies, or other government entities.
  • organisations that may provide services to us - where relevant we may need to share some of your information to companies we engage with (for example, accountants, lawyers, business advisors, marketing service providers, debt collection service providers, equipment providers). Note that these third parties are prohibited by law or by contract from processing personal information for purposes other than those disclosed in this Privacy Policy.
  • where the information is already in the public domain.
  • business sale or merger - where contact data may be passed to new owners.


At your request, we will provide you with reasonable access to your personal information, so that you can review what we have stored and, if you choose, request corrections to it. Please request access by writing to us at the address listed in the Contact Information section below.


MinAssist combines technical and physical safeguards with employee policies and procedures to protect your information. We will use commercially reasonable efforts to protect your information.

Links to Other Websites

When you click on a link on this website that takes you to a website operated by another company, you will be subject to that company’s privacy practices.


MinAssist may amend this Privacy Policy from time to time.

Enforcement, Dispute Resolution, and Verification

Please contact us with any questions or concerns related to this Privacy Policy by using the address listed in the Contact Information section below. We will investigate and attempt to resolve complaints or disputes regarding personal information.

Contact Information

If you have questions or concerns related to this Privacy Policy, you may contact us by email at

Category: Grinding

Operational Health Check Suite

Over the last few months, MinAssist has progressively launched a series of “Operational Health Checks” that have been developed as suite of off-the-shelf process mineralogy studies targeted at giving rapid performance gains for a minimum of fuss.  Each of these fit in to a Suite of programs that are focused on bringing cost savings, recovery improvements and general risk reduction through improved understanding of ore types.


Key points within the processing circuit have been identified, and a mineralogical testwork program developed to:

     – target the typical challenges encountered

     – indicate overall circuit efficiency

     – identify possible areas for improvement


The sample points have been pre-determined, the analytical testwork process developed, and the critical information to examine identified.  This removes much of the hassle for a busy plant metallurgist looking to undertake a process mineralogical study.  It also reduces the overall time-to-result: providing a concise, metallurgically focussed report of the mineralogy in a meaningful time frame.


HC Benefits

The Health Check suite is ideal to for:

     – the busy process metallurgist looking to get the best from a circuit

     – taking a quick look at the health of a circuit to make sure things are running as they should be

     – as a prelude to a more in-depth study based on the findings of the health check


A Health Check can be run as a one-off study, or on a routine basis to build up a complete picture over time.


Value losses due to poor liberation and classification

Ball MillThe crushing and grinding circuit in any process flowsheet is a major contributor to cost and should be a major focus of any continuous process improvement program. While the direct costs (i.e. power and maintenance) within the crushing and grinding circuits are generally the primary consideration for optimisation, the indirect costs associated with insufficient liberation or over grinding can have as profound an impact on downstream processes. Care should be taken when evaluating comminution circuit optimisation that efforts to increase throughput or reduce energy requirements don’t have a negative impact on the liberation characteristics of the material and result in reduced downstream recovery.


Rock and Mineral Texture: Controls on Processing

The texture of an ore will define: the grain size distribution(s) and P80 target grind size; the grindability of the ore; the degree of liberation of the target mineral(s); the phase specific free surface area of the target mineral(s); the amount of fines; and the number of coarse composite particles.  These factors will play a major influence on the process flowsheet developed for an ore, from mining strategy through to blending, processing, target grade and recovery, and tailings management.  Understanding these will aid the processing engineer when trying to unlock the maximum value from the rocks, with the minimum of effort, cost and environmental impact.


Texture, in the context of geometallurgy, simply refers to the relationship between the minerals of which a rock is composed (Wikipedia definition).  It includes the size, shape, distribution and association of the minerals in the rock.  All textures, including crystallinity, grain boundary relations, grain orientations, fractures, veinlets etc have a bearing on processing ores, but the sizes of the mineral grains, and the bonding between the grains are the main characteristics that influence ore breakage and mineral liberation (Petruk, 2000).  Understanding the geology and history of an ore will help unravel the complex nature of the textures that may be encountered during processing.


Example of textural changes due to oxidation and deformation (Butcher 2010).

Example of textural changes due to oxidation and deformation (Butcher 2010).


Where we lose money in mineral processing operations


Every mineral processing operation has some areas that are inefficient and cost them money every day.  Understanding where these areas might be and how value losses occur is a fundamental aspect of continual process improvement that needs to be constantly monitored.  MinAssist has begun a program of offering targeted health checks for operations to rapidly monitor key areas where cost savings or recovery improvements might be achieved.  These are off-the-shelf programs designed to make implementation of process mineralogy as a tool easy and accessible to busy operations personnel.



In developing theses health checks we have been looking at the areas in which operations lose money and thought that this information would be very useful to everyone looking at process improvement.  In this post we will explore some key areas where cost savings or recovery improvements can commonly be made.  Over the next few weeks we will delve deeper into each of these areas to provide you with an insight into how process mineralogy can help in making measurable improvements in any operation.


Reducing the cost of grinding

2_Oyu Tolgoi_SAG Mill_#1The grinding circuit in any operation is a major contributor to overall operating costs and should be a major focus of ongoing process optimisation and improvement programs.  The grinding circuit can account for up to 40% of energy costs within a process circuit.  Understanding the behaviour of material through the grinding circuit is a significant step on the right path for reducing costs, minimising energy use for sustainable practice and ultimately improving recoveries in down stream circuits.  To help with this MinAssist has developed the first in a suite of off-the-shelf services to make undertaking a Grind Optimisation Program accessible and easy.